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Abstract. The self-consistent electron potential in a current-carrying disordered quantum wire
is spatially inhomogeneous due to the formation of resistivity dipoles across scattering centres.
In this paper it is argued that these inhomogeneities in the potential result in a suppression of the
differential conductance of such a wire at finite applied voltage. A semi-classical argument allows
this suppression, quadratic in the voltage, to be related directly to the amount of intrinsic defect
scattering in the wire. This result is then tested against numerical calculations.

1. Introduction

In recent years it has been possible experimentally to produce laterally confined conductors,
often referred to as quantum wires, with a transverse size not much larger than the Fermi
wavelength of the electrons. One example of such a conductor is a constriction in a two-
dimensional electron gas in a semiconductor heterostructure [1, 2]. Another example is that
of three-dimensional metallic nanojunctions, produced using mechanically controllable break
junctions [3, 4] or scanning tunnelling and atomic force microscopes [5–7].

Modelling work has studied the relation between the zero-voltage conductance of nano-
wires and their underlying atomic structure and geometry. Atomistic simulations combined
with conductance calculations [8–11] explained the experimentally observed jumps in the
zero-voltage conductance [3–7] and in the applied tensile force [12–14] during wire pull-
off in terms of abrupt atomic rearrangements in response to the applied strain. Conductance
calculations on static geometries [15,16] and further atomistic simulations [17,18] investigated
the effect of shape and internal structure on the experimentally observed quantization, in units of
G0 = 2e2/h, of the zero-voltage conductance of nanoscale metallic constrictions [6,7,19–22].

Another electrical conduction property of quantum wires that can be measured in
experiment is their differential conductance as a function of applied voltage. Theoretical
models have related non-linearities in the differential conductance, as a function of voltage, of
ballistic constrictions to their energy subband structure [23–28]. The purpose of the present
paper is to relate the finite-voltage differential conductance of disordered quantum wires in the
elastic, phase-coherent regime to the intrinsic disorder in them. One aspect of this problem
is the relation between elastic scattering and conductance fluctuations [29]. Here we consider
another aspect.

Below, it is argued that spatial inhomogeneities in the self-consistent electron potential in a
current-carrying disordered wire result in an overall suppression of the differential conductance
as a function of voltage. This suppression is directly related to the amount of intrinsic
defect scattering in the wire, because the spatial inhomogeneities in the potential, causing the
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suppression, originate from the formation of resistivity dipoles across the scattering centres in
the wire. A semi-classical argument, given in the next section, gives a model relation between
the suppression of the conductance and the quantity L/l0, where L is the length of the wire
and l0 is the mean free path of the electrons in it. This relation is tested against numerical
calculations in section 3. Section 4 contains a discussion and a summary of the results in
the paper.

2. Simple model

We consider the following set-up. We imagine a quantum wire of length L, with a uniform
cross-section. The wire contains a random distribution of defects, giving rise to phase-coherent
electron scattering with a mean free path l0. Each end of the wire is connected to a macro-
scopic electrode. The two electrodes, which are identical, are biased relative to each other by
the application of a battery of voltage W , producing a flow of electrons from left to right.

The variation of the self-consistent one-electron potential along such a system is known
[30–34]. If the wire is perfect, then the potential deep inside each electrode and deep inside
the wire is constant, and the potential drops occur through the contacts between the electrodes
and the wire. If there is scattering in the wire, then the potential drop occurs partly through the
contacts and partly through the wire. At finite bias, these potential variations along the system
constitute an additional scattering mechanism for the conduction electrons. Let us consider its
effect on the finite-voltage differential conductance of the wire.

The self-consistent electron scattering in a current-carrying disordered conductor results
in a concentration of the electric field across scattering centres, through the formation of
residual resistivity dipoles around obstacles to current flow [31, 33, 35–38] (see also [39] and
further references therein). Our first assumption is that the wire is sufficiently wide, and
the defects in it are sufficiently dilute, that a well-defined resistivity dipole forms around
each defect. Let us think of the potential in our system in the following way [33]. We
imagine a smooth average background potential profile, with a total drop equal to the battery
voltage W , extending from deep inside the left electrode, through the wire, to deep inside
the right electrode. This average background potential is symmetric about the mid-point
of the wire, which should be true at least in the small-voltage limit. Superimposed on the
background potential is a set of resistivity-dipole potentials, each centred at a defect in the
wire and each consisting of a potential hump in front of the defect and a potential trough
behind the defect.

Next, we ignore electron backscattering by the background potential. For a given applied
voltage W , this will require the length of the system to be sufficiently large to ensure that
the gradient of the background potential profile is everywhere sufficiently small to allow
this background potential to be treated as an adiabatic semi-classical potential. All electron
scattering in the wire at finite voltage, then, is due to the intrinsic defects and to the resistivity-
dipole potentials around these defects.

We make two more approximations. We ignore electron backscattering at the contacts
between the wire and the electrodes, and we assume that eW is much less than the energy
subband spacing in the wire so that the number of open conduction channels, N , in the wire
is constant over an energy window eW around the Fermi level. Then, using the Landauer
conductance formula [40], for the electron current in the system I = I (µ,W) we write

I = 2eN

h

∫ µ+eW/2

µ−eW/2
T (E,W) dE (1)



Non-linear conductance of disordered quantum wires 8997

where µ is the position of the Fermi level in the absence of the applied voltage, and

NT (E,W) =
N∑
n=1

Tn(E,W)

with Tn(E,W) being the probability that an electron entering channel n in the biased wire,
from the left electrode, will be transmitted through the wire, to the right electrode.

Next, we invoke the semi-classical result [41]

〈T (E,W)〉 = 1/(1 + L/l) (2)

where the angular brackets designate averaging over different defect configurations, and, to
within a factor of order unity, l is the mean free path of electrons with energyE in the disordered
biased wire. We assume that the intrinsic defects and the resistivity-dipole potentials within
the wire can be treated as two independent scattering mechanisms, satisfying Matthiessen’s
additivity rule, and write

1/l = 1/l0 + 1/lW (3)

where lW is the electron mean free path for scattering by the dipole potentials. In general, l0
and lW will be functions of the electron energy E in equations (1) and (2).

Consider lW . It is given by

1/lW = nσW = (nσd)(σW/σd) = (1/l0)(σW/σd) (4)

where n is the density of the resistivity dipoles, which is the same as that of the intrinsic
defects, σd is the scattering cross-section of a defect and σW is the scattering cross-section of
its resistivity dipole. Like l0 and lW , σd and σW are functions of E.

Treating the dipoles as weak scatterers, we assume that σW is proportional to the square of
the amplitude of a resistivity-dipole potential. This amplitude must in turn be proportional to
the electron current density, incident on the defect. In the extreme limit where this defect is the
only defect in the wire, this current density is the unperturbed current density that would flow
in the defect-free wire. Hence, in that limit, to lowest order inW , we have σW = σ 0

WW
2, where

σ 0
W is a constant that is independent of W but is, in general, a function of the electron energy
E. In the opposite limit, where there are many defects in the wire and electron flow through
it is diffusive, the current density incident on a defect is essentially the same as the average
current density in the specimen. Hence, in this limit we write σW = σ 0

WW
2/(1 + L/l0)2. As

a trial form, for the intermediate regime we write

σW = σ 0
WW

2/(1 + L/l0)
ν (5)

where ν is an empirical exponent, with 0 � ν � 2.
Combining equations (1) to (5), for the configurationally averaged current in the system

we obtain

〈I 〉 = 2eN

h

∫ µ+eW/2

µ−eW/2

1

1 + x + xsW 2/(1 + x)ν
dE (6)

where x = x(E) = L/l0 and s = s(E) = σ 0
W/σd .

Let now G = G(µ,W) = ∂I/∂W be the differential conductance at bias W . After
configurational averaging, from equation (6) to lowest order in W we obtain

〈G〉 = 〈g〉 − 3G0NsW
2 x/(1 + x)2+ν (7)

where s = s(µ), x = x(µ) and

g = g(µ,W) = [G(µ + eW/2, 0) + G(µ− eW/2, 0)]/2. (8)
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Equation (7) states that the configurationally averaged differential conductance 〈G〉, as a
function of W , is suppressed below the reference quantity 〈g〉 by an amount, quadratic in W
and proportional to x/(1 + x)2+ν . The quantity x = L/l0, in turn, is a measure of the amount
of scattering in the wire and may be used to differentiate between the ballistic, diffusive and
localization regimes in the wire [41]. Equation (7) therefore gives a direct relation between
the finite-voltage differential conductance and the intrinsic disorder in the wire.

Since the zero-voltage conductance G(µ, 0) satisfies

〈G(µ, 0)〉 = G0N/[1 + x(µ)] (9)

we may eliminate N and write equation (7) in the alternative form

[〈g(µ,W)〉 − 〈G(µ,W)〉]/〈G(µ, 0)〉 = 3sW 2 x/(1 + x)1+ν . (10)

Equations (7) and (10) hold for configurationally averaged quantities. These equations do not
apply to individual wires.

3. Numerical calculations

We now consider a model numerical example to see whether equation (7) is obeyed. The
method for the calculation has been presented in detail elsewhere [39]. We consider two semi-
infinite perfect leads connected by a wire. The leads and the wire have a simple square lattice
structure. The width of the leads is 60 atoms and that of the wire is 10 atoms. The length of
the wire is 10 atoms. The electronic structure of the system is described by a single-orbital
nearest-neighbour orthonormal tight-binding model with a hopping integral of −t < 0. The
wire contains randomly distributed impurity atoms. In the absence of an applied bias, the
on-site energy is zero on the native atoms and +6 t on the impurity atoms. The Fermi level in
the absence of the bias is µ = −1.43 t . There are N = 6 open channels in the wire at µ.

The electron eigenstates for this system may be divided into two subsets [39, 41, 42].
One subset, {|�1〉} with energies {E1}, consist of a right-travelling Bloch wave incident upon
the wire from the left electrode, partially reflected back into the left electrode and partially
transmitted though the wire into the right electrode, and conversely for the other subset,
{|�2〉} with energies {E2}. A battery of voltage W , connected across the leads, populates
the states {|�1〉} with a Fermi–Dirac occupation function f1 with electrochemical potential
µ1 = µ + eW/2, and it populates the states {|�2〉} with a Fermi–Dirac occupation function
f2 with electrochemical potential µ2 = µ − eW/2. The electrons in the current-carrying
lead–wire–lead system are described by the one-electron density matrix [39]

ρ =
∫
f1(E)D1(E) dE +

∫
f2(E)D2(E) dE (11)

where

D1(E) =
∑

1

|�1〉δ(E − E1)〈�1| D2(E) =
∑

2

|�2〉δ(E − E2)〈�2|.

The total current in the system is given by I = Tr[Iρ], where

I = (e/ih̄)(P2HP1 − P1HP2)

is the tight-binding current operator [39,41,42]. HereH is the tight-binding Hamiltonian, and

P1 =
∑

1

|1〉〈1| P2 =
∑

2

|2〉〈2|
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where {|1〉} and {|2〉} are the tight-binding positional basis states on atoms lying to the left and
to the right, respectively, of an arbitrary open surface through the system. In the limit of zero
temperature, assumed throughout the paper, we obtain

I =
∫ µ1

µ2

Tr[ID1(E)] dE. (12)

The zero-voltage conductance at Fermi energy µ is given by [39]

G(µ, 0) = 2e Tr[ID1(µ)] (13)

where D1 is evaluated in the absence of the applied bias, and we have included a factor of
2 for spin degeneracy. It has been shown [39] that equation (13) is equivalent to earlier
expressions [41, 42] for G(µ, 0).

Within a Thomas–Fermi-type approximation, to lowest order in the battery voltage W ,
the on-site energy on atom n in the presence of the bias is shifted relative to its value in the
absence of the bias by an amount of eWn, where [39]

Wn = W(D1nn/Dnn − 1/2). (14)

Here, D1nn and Dnn are the on-site matrix elements on atom n of the operators D1(µ) and
D(µ) = D1(µ) +D2(µ), respectively, evaluated in the absence of the bias. The bias-induced
on-site potential shifts {Wn} represent the additional self-consistent potential in the system in
the presence of the applied bias, whose gradient gives the local transport field, driving the
current [39]. At finite bias, D1(E), and hence I in equation (12), is calculated in the presence
of these on-site energy shifts.

We now consider a wire containing two impurities. Figure 1 shows a plot of {Wn}, in
units of the battery voltage W . The impurity atoms in the wire are indicated by the broken
arrows. The potential deep inside each lead flattens out. There is an overall potential drop from
left to right. The lighter region immediately in front of each impurity and the darker region
immediately behind it show the formation of a resistivity dipole across the impurity. These

BELOW -0.5

-0.5 - -0.4

-0.4 - -0.3

-0.3 - -0.2

-0.2 - -0.1

-0.1 - 0.0

0.0 - 0.1

0.1 - 0.2

0.2 - 0.3

0.3 - 0.4

0.4 - 0.5

ABOVE 0.5 D

B
A

impurity

impurity

C

Figure 1. The bias-induced on-site potential shifts in the lead–wire–lead system in units of the
battery voltage W . The wire contains two impurities, indicated by the broken arrows. Only a
section of the full 60-atom cross-section of the leads is shown in the plot.
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features can be seen clearly by plotting the potential along atom rows A, B, C and D from
figure 1. These plots are shown in figure 2. The points corresponding to the two impurities, in
the bottom and top plot in figure 2, respectively, are circled. The resistivity dipole across each
impurity appears as a potential hump in front of the impurity and a potential trough behind
it, superimposed on the overall background potential drop. The potential shows also some
interference oscillations.

0 10 20 30 40
atom from left to right

−1

0

1

2

3

4

po
te

nt
ia

l (
W

)

Figure 2. The bias-induced on-site potential shifts, in units ofW , from left to right, along atom rows
A (crosses), B (triangles), C (squares) and D (stars) of the lead–wire–lead system from figure 1.
The plots for rows B, C and D are shifted vertically by one, two and three units, respectively, for
clarity. The first fifteen atoms in each row lie in the left lead and the last fifteen lie in the right
lead. The points corresponding to the two impurities, in the bottom and top plot, respectively, are
circled.

If the leads had infinite transverse size, then the potential would reach up to +W/2 deep
inside the left lead and down to −W/2 deep inside the right lead [33,39,43,44]. In the present
example, where the cross-section of the leads is much greater, but not infinitely greater, than
that of the connecting wire, the potential falls just short of these limiting values. In the actual
calculation of the current under finite voltage, the on-site potentials are set equal to the values
given by equation (14) within all wire atoms and within the first seven layers of each lead.
The potential is set to +W/2 over the rest of the left lead and −W/2 over the rest of the right
lead. The calculation of the operators D1 and D, needed to evaluate equations (12), (13) and
(14), uses a standard Green-function method and has been described elsewhere [39, 41]. The
integration in equation (12) uses an energy step of"E = 0.004 t . The differential conductance
is obtained by taking the difference between currents for successive voltages and dividing it
by the voltage increment "E/e.

Figure 3 shows the zero-voltage conductance as a function of Fermi energy for the lead–
wire–lead system with the two impurities (solid line). The zero-voltage conductance for the
case without the impurities is also shown for comparison (broken line). The conductance for the
impurity-free system shows a typical ballistic conductance staircase in steps of G0 = 2e2/h.
The oscillations on each plateau are due to multiple reflections from the ends of the wire [45].
The introduction of the two impurities suppresses the zero-voltage conductance.
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Figure 3. The zero-voltage conductance, in units of 2e2/h, versus Fermi energy, in units of the
nearest-neighbour hopping integral t , for the system from figure 1 (solid line). The conductance
for the case where there are no impurities in the wire is also shown for comparison (broken line).
The vertical line at energy −1.43 t shows the position of the Fermi level µ used for the rest of the
calculations.

Figure 4 shows the differential conductanceG(µ,W) (solid line) and the quantity g(µ,W)

from equation (8) (broken line) versus battery voltageW , for the system with the two impurities.
The plot illustrates the behaviour, given by equation (7). G follows g in overall shape but
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Figure 4. The differential conductance G(µ,W) (solid line) and the quantity g(µ,W) =
[G(µ+ eW/2, 0)+G(µ− eW/2, 0)]/2 (broken line) versus battery voltage for the lead–wire–lead
system with the two impurities.
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is suppressed below g in magnitude. An interesting feature of the plot is the cusps in the
differential conductance. These cusps, not all of which are resolved with the present energy
step "E, correspond to the opening or closing of conductance channels in the leads. Test
calculations on smaller systems showed that in general, in the presence of disorder in the wire,
the existence of a subband edge at energy µ + eW in the perfect lead in the unbiased system
results in cusps in the quantitiesG(µ+eW, 0),G(µ,±W) and g(µ, 2W). Here, this effect will
not be investigated further, except to note that past calculations have reported sharp, cusp-like
variations in the zero-voltage conductance near subband edges in disordered wires [45, 46].

Equation (7) is now tested in the following way. The wire is given a random distribution
of impurities with a fractional concentration p. For each value of p, G(µ,W) and g(µ,W)

are calculated for voltages from W = −0.12 t/e to W = +0.12 t/e and are averaged over
50 impurity configurations. The value of x = L/l0 for that p is inferred from equation (9).
A quadratic in W is fitted to (〈g〉 − 〈G〉)/G0 and the coefficient of W 2, cW , is plotted as
a function of x. This plot is shown in figure 5 (crosses). The ten points from left to right
correspond to p = 0.01m with m = 1, . . . , 10, respectively. According to equation (7),
cw = 3Ns x/(1 + x)2+ν . Also shown in figure 5 is a plot of this function with s = 0.5 e2/t2

and ν = 1 (solid line).

0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

c W
 (

e2 /t2 )

Figure 5. The coefficient, cW , ofW 2 in [〈g(µ,W)〉− 〈G(µ,W)〉]/G0 versus x = L/l0 (crosses).
The curve cw = 3Ns x/(1 + x)2+ν with N = 6, s = 0.5 and ν = 1 is also shown for comparison
(solid line).

4. Discussion and summary

The results in figure 5 support equation (7). To within an order of magnitude, the value for
s of 0.5 e2/t2, obtained from the fit, may be understood as follows. Place a lone impurity
in a ballistic wire. Apply a voltage W . A resistivity dipole forms around the impurity. Let
the lobe of the resistivity-dipole potential in front of the impurity reach up to +ξW/2, and
let that behind the impurity reach down to −ξW/2. Let each lobe of the dipole potential
extend laterally over ζ atoms, where ξ and ζ are numbers of order unity. Embed this dipole
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potential in an infinite perfect simple square lattice. Then, treating the two lobes as independent
scatterers with additive cross-sections and using the Fermi golden rule, we may estimate the
scattering cross-section of the dipole as σW = πηe2W 2ρµa

2/(h̄vµ), where η = ξ 2ζ , ρµ is
the Fermi density of states per atom, a is the lattice parameter, and vµ is the average of the
Fermi velocity over the Fermi surface for the infinite square lattice. Note that, as is appropriate
in two dimensions, the cross-section has units of length. The Green function, and hence the
density of states, for the infinite square lattice can be evaluated by Brillouin zone integration,
giving ρµ = 0.125 t−1. As an estimate of vµ, take the Fermi velocity in the [11] direction,
given by 2

√
2at sin[cos−1(−µ/4t)]/h̄. This gives σW = 0.15η e2W 2a/t2. Assuming that the

cross-section of the impurity, σd , is comparable to a, for s = σW/(W
2σd) we find a value of

0.15η e2/t2, compatible with that obtained from the fit in figure 5.
Let us now discuss the limitations of the model in the paper. To derive equation (6), we

ignored electron backscattering by the smooth average background potential, on which the
dipole potentials are superimposed. This background potential will in general cause some
reflection, which will lead to an additional suppression of the transmission through the wire,
as seen for example in recent calculations on defect-free ballistic atomic chains [47]. Let
us estimate the size of the effect. Let the background potential drop of W be realized over
a length of the order of L = NLa, where NL is the number of atoms along the wire. In
reality the background potential drop extends over parts of the leads too, making the length in
question larger than the wire length, but we will ignore this here for simplicity. Think of this
background potential as a series of NL potential steps of height W/NL. Treating each step
as a weak scatterer, a free-electron calculation in one dimension gives for the total reflection
probability of the NL steps RL = (eW/EF )

2/(16NL), where EF is the Fermi energy in the
free-electron model. From equation (6), on the other hand, we may identify the total reflection
probability due to the distribution of resistivity-dipole potentials as RW = sxW 2/(1 + x)ν .
Then, with s = 0.5 e2/t2 and with t and EF of the order of eV, RW/RL will be of the order
of 8NLx/(1 + x)ν . For any value of x, therefore, we can always make RW dominate RL by
makingNL large enough. In particular, with allowances for the crudeness of the argument, for
intermediate values of x around unity, RW will dominate RL for NL > 10.

Another limitation of the earlier analysis is the assumed empirical relation between σW
and x = L/l0 in equation (5). That equation was introduced as a trial form for intermediate
values of x. As indicated earlier, the true dependence of σW on x ought to reduce to σ 0

WW
2/x2

in the extreme diffusive limit.
The most serious approximation in the paper is in the treatment of the scattering by

the dipole potentials. We have treated the resistivity dipoles and the intrinsic defects as
independent scattering mechanisms that add in series. In the limit where each defect can
be treated as a weak scatterer, this assumption can be justified as follows. Consider a lone
substitutional impurity with on-site energy vd , placed at the origin in an otherwise perfect
infinite crystal. Illuminate the impurity by a uniform current density. Let V = Vd +VW be the
self-consistent tight-binding potential in the presence of the current, whereVd = |0〉vd〈0| is the
scattering potential of the impurity, and VW = ∑

n |n〉WRn
〈n| is the additional self-consistent

potential in the presence of the current. Here |n〉 is the tight-binding basis state at atom n with
position Rn, with the impurity atom labelled as 0. The on-site energy shifts {WRn

} constitute
the resistivity-dipole potential. To lowest order in the current, WRn

is linear in the current.
This, together with the inversion symmetry of the system, implies that WRn

is an odd function
of Rn,WRn

= −W−Rn
. Consider now the matrix element 〈k|V |k′〉 for scattering between two

Bloch-wave states

|k〉 =
∑
n

exp (iRn · k)|n〉 |k′〉 =
∑
n

exp (iRn · k′)|n〉.
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Using the property WRn
= −W−Rn

, it is easy to show that

|〈k|V |k′〉|2 = |〈k|Vd |k′〉|2 + |〈k|VW |k′〉|2.
Therefore, within the Fermi golden rule, σ = σd + σW , where σ is the scattering cross-section
of the combined potential V , and σd and σW are the separate cross-sections of the impurity
potential Vd and the dipole potential VW , respectively. Equation (3) follows. However, in the
case of strong impurity scattering, the cross-section of the combined potential may contain
significant higher-order mixed terms inVd andVW . These higher-order interference corrections
are ignored in equation (3).

In our estimate of the dipole cross-section and the quantity s above, we have ignored the
long-range behaviour of the dipole and have treated the dipole as a simple localized scatterer.
In reality, while the dipole potential does have localized lobes in the immediate vicinity of the
defect, it also has complex long-ranged tails [37,38]. This will affect the value of σW and will
introduce some environment dependence in σW and in s.

A more rigorous calculation should treat the defect and its associated resistivity-dipole
potential as a single entity and should allow for the long-range behaviour of the dipole. A
particular line of thought to be explored by more detailed calculations is this. It is tempting
to imagine that the lateral spatial extent of the lobes of the resistivity-dipole potential will
be roughly proportional to the lateral extent of the defect that gives rise to the dipole. The
scattering cross-section of the dipole would then be roughly proportional to that of the defect,
making the quantity s ∝ σW/σd in equations (7) and (10) relatively insensitive to the precise
nature of the defect. That would make s an intrinsic property of the metal, determined by
its electronic properties at the Fermi level. Equations (7) and (10) would hold whatever the
defects in the wire, and, if scattering rates due to different defects are additive, these equations
would hold also when more then one type of defect is present. The validity, or otherwise, of
this guess depends crucially on the long-range details of the dipole potential.

Experimental measurements of the finite-voltage differential conductance of atomic-
scale metallic contacts are available. Some measurements show a pronounced quadratic
increase in conductance with voltage [22, 48], while others show no evidence for such an
increase [49, 50]. It has been suggested recently [51] that the large non-linearities in the
current–voltage characteristics are due to tunnelling through a contaminant layer between
the electrodes, whereas for clean point contacts, the current–voltage relation is almost linear.
Tunnelling effects are not included in equations (7) and (10) and in an experimental test of
these equations it would therefore be necessary to ensure that such effects are not present.

A difficulty in testing equations (7) and (10) experimentally is the appearance in them of
the quantity g = [G(µ + eW/2, 0) +G(µ− eW/2, 0)]/2. To measure g directly, it would be
necessary to probe the zero-voltage conductance away from the Fermi level. Else, it would
be necessary to make an assumption about g. For instance, one could assume that, at least for
modest amounts of strong, semi-classical scatterers, the electron mean free path l0, and hence
the configurationally averaged zero-voltage conductance, is independent of energy, in which
case 〈g〉 may be treated as independent of W .

In conclusion, the self-consistent effective potential in a current-carrying disordered
quantum wire is non-uniform due to the formation of resistivity dipoles across scattering
centres. It is argued here that these non-uniformities in the potential result in a suppression
of the conductance of such a wire at finite voltage. The suppression is related directly to
the intrinsic scattering in the wire via equations (7) and (10). These equations have been
derived by an unrigorous, semi-classical argument and they may be viewed only as model
semi-empirical relations. Nonetheless, they are borne out by numerical calculations, and they
express a general point: the suppression of the differential conductance at finite voltage is a
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function of the quantity x = L/l0, and this suppression vanishes in the ballistic and diffusive
limits, peaking in between, for values of x comparable to unity. Conductance fluctuations are
related to the elastic electron mean free path l0 in a nanojunction [29]. That, combined with
determination of the quantity x = L/l0 along the lines outlined above, could allow the actual
effective length L of a nanojunction to be inferred solely from its differential conductance.
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[40] Büttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
[41] Todorov T N 1996 Phys. Rev. B 54 5801
[42] Todorov T N, Briggs G A D and Sutton A P 1993 J. Phys.: Condens. Matter 5 2389
[43] Landauer R 1989 J. Phys.: Condens. Matter 1 8099
[44] Landauer R 1992 Phys. Scr. T 42 110
[45] Todorov T N and Briggs G A D 1994 J. Phys.: Condens. Matter 6 2559
[46] Garcia-Mochales P, Serena P A, Garcia N and Costa-Krämer J L 1996 Phys. Rev. B 53 10 268
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